Skip to main content
McMaster University Menu Search

Personal tools

You are here: Home / Publications / Papers / Terminal distributary channels and delta front architecture of river-dominated delta systems

Cornel Olariu and Janok Bhattacharya (2006)

Terminal distributary channels and delta front architecture of river-dominated delta systems

Journal of Sedimentary Research, 76(2):212–233.

Using modern and ancient examples we show that river-dominated deltas formed in shallow basins have multiple coeval terminal distributary channels at different scales. Sediment dispersion through multiple terminal distributary channels results in an overall lobate shape of the river-dominated delta that is opposite to the digitate Mississippi type, but similar with deltas described as wave-dominated. The examples of deltas that we present show typical coarsening-upward delta-front facies successions but do not contain deep distributary channels, as have been routinely interpreted in many ancient deltas. We show that shallow-water river-dominated delta-front deposits are typically capped by small terminal distributary channels, the crosssectional area of which represents a small fraction of the main fluvial ‘‘trunk’’ channel. Recognizing terminal distributary channels is critical in interpretation of river-dominated deltas. Terminal distributary channels are the most distal channelized features and can be both subaerial and subaqueous. Their dimensions vary between tens of meters to kilometers in width, with common values of 100–400 m and depths of 1–3 m, and are rarely incised. The orientation of the terminal distributary channels for the same system has a large variation, with values between 123u (Volga Delta) and 248u (Lena Delta). Terminal distributary channels are intimately associated with mouth-bar deposits and are infilled by aggradation and lateral or upstream migration of the mouth bars. Deposits of terminal distributary channels have characteristic sedimentary structures of unidirectional effluent flow but also show evidence of reworking by waves and tides.