Paleohydrology, 3D facies architecture, and plan view meanderbelt evolution of ancient point bars, Ferron Sandstone, Notom Delta, South-Central Utah

Janok P. Bhattacharya, Proma Bhattacharyya, Martin Harrison, Shuhab D. Khan, Mohammed S. Ullah, Jiangqaio Wang & Chenliang Wu

McMaster

University

Outline

- Introduction
- The Ferron examples
- Conclusion

Most ancient river outcrops...

Present vertical exposures from which plan view must be inferred.

Bristow, 1993

But, flow-perpendicular exposures are required to determine bar and channel types.

Some ancient river outcrops...

Martian outcrops show 3.5 billion year old meanderbelts in plan view!

Howard et al., 2007

Martian cliff sections

Pondrelli et al., 2008

Amalgamated boulder gravel channel storeys sure look "braided" in cross section.

estimated scale

е

w m

s

Granulometry (inferred and roughly measured)

3D Seismic example, Gulf of Thailand

> Plan views are common in 3D seismic data.

The McMurray Formation

174 billion barrels (\$8.7 Trillion) of oil contained in huge point bars requires stunningly detailed and sophisticated reservoir characterization. If 1% of this value were devoted to research, every single attendee at this conference could receive a \$3.5 million grant!

Outline

The Ferron examples

Turonian

The Ferron is one of a series of Cretaceous fluviodeltaic clastic wedges in Western North America

Turonian Ferron Sandstone

- Superb exposures near Capitol Reef, Utah
- 33 students over
 12 years

Caineville Reef, Utah

• 20°-30° structural tilt of the outcrops enable walking on hogsback ridges to trace key surfaces and sandstone bodies.

Ferron Sandstone Dip Sequence Stratigraphy

- 43 Parasequences, 18 Parasequence Sets, 6 Sequences
- Upper ¹/₂ is largely fluvial.

Non-Marine Sequences

Bar accretion versus dune foresets

Bar accretion and dune foresets are integrated to document flow direction and bar accretion direction.

Sedimentary Geology 325 (2015) 17-25

Contents lists available at ScienceDirect

Sedimentary Geology

journal homepage: www.elsevier.com/locate/sedgeo

Paleo-channel reconstruction and grain size variability in fluvial deposits, Ferron Sandstone, Notom Delta, Hanksville, Utah

Proma Bhattacharyya ^{a,*}, Janok P. Bhattacharya ^b, Shuhab D. Khan ^a

^a Department of Earth and Atmospheric Sciences, 312 Science & Research Building #1, University of Houston, Houston, TX 77204-5007, USA ^b School of Geography and Earth Sciences (SGES), McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 L8, Canada

Hillshade Images

Bhattacharyya et al., 2015

Journal of Sedimentary

Research

Journal of Sedimentary Research, 2015, v. 85, 399–418 Research Article DOI: http://dx.doi.org/10.2110/jsr.2015.29

PALEOHYDROLOGY AND 3D FACIES ARCHITECTURE OF ANCIENT POINT BARS, FERRON SANDSTONE, NOTOM DELTA, SOUTH-CENTRAL UTAH, U.S.A.

CHENLIANG WU,¹ JANOK P. BHATTACHARYA,² AND MOHAMMAD S. ULLAH³

Architectural Element identification

Wu et al., 2015

Paleocurrent Fields

Wu et al., 2015

Dune-scale cross beds

Rib 'n Furrow

Wu et al., 2015

Areal parameters

Wu et al., 2015

Evolution of a meander loop

SEDIMENTOLOGY

Sedimentology (2016) 63, 1458-1473

doi: 10.1111/sed.12269

Formation of point bars through rising and falling flood stages: Evidence from bar morphology, sediment transport and bed shear stress

the journal of the

International Association of Sedimentologists

CHENLIANG WU*, MOHAMMAD S. ULLAH†, JIN LU‡ and JANOK P. BHATTACHARYA§

Paleoflow field versus bar migration direction and channel orientation

Flow Strength & Skin Friction

Wu et al., 2016

Paleocurrent variance from Channel Axis

Flow orientation

 $\beta >0$ flow toward the belt margin B<0 flow toward the belt axis

Position along the bend

 $\alpha < 0$ landward side of the bar $\alpha > 0$ seaward side of the bar

Slide courtesy of M. Ghinassi

Paleocurrent distribution

Wu et al., 2015- JSR Cretaceous Ferron Sandstone (Utha, USA) Pleistocene Aalat Fm. (Eritrea)

Ghinassi et al., 2013- JSR

Slide courtesy of M. Ghinassi

Identification of channel belts

- Paleocurrent changes
- Grain size jumps
- Cross-cutting relationships

3 channel belts

Jianqaio Wang, 2013

Identification of Unit Bars in Outcrop

Meters-wide ribs, **>0.5-meter thick foresets**

Mapping Unit Bars

Wang & Bhattacharya, in revision, JSR

Paleochannel Reconstruction

Unit bars are amalgamated and plastered onto the outside of the meander during late-stage filling Wang and Bhattacharya, *in revision*, JSR).

Comparison to Red River

Paleohydraulics

Wu et al., 2016

Dimensions and Shapes

1470 C. Wu et al.

Table 1. Channel dimension parameters.

Channel bend	Channel depth <mark>(</mark> m)*	Channel width (m)*	Sinuosity [†]	Wavelength (m) [†]	Radius of curvature (m) [†]	Amplitude (m) [†]
1	ND	ND	1.04	830	351	103
2	1.7 to 2.9	23 to 59	1.14	820	205	201
3	2.0 to 3.4	35 to 89	1.19	940	216	267
4-1	2.0 to 3.4 [‡]	32 to 81 [‡]	1.20	1012	228	302
4-2			1.19	1149	263	329
4-3			1.22	1157	255	360

TABLE 2.—Paleohydraulic parameters estimated from Method 1.

Point Bar Number	Average Set Thickness (cm)	Average Dune Height (cm)	Channel Depth (m)	Channel Width (m)	Sinuosity
1	/	1	1	1	1.01
2	9.7	22-43	1.7-2.9	23-59	1.19
3	12.0	27-54	2.0-3.4	35-89	1.35
4	11.4	25-51	2.0-3.4	32-81	1.44

 $Qw = 115 - 387m^{3/s}$

CONCLUSIONS

- River type low sinuosity highly amalgamated meanderbelts
- Small to moderate size (<5m deep, Q_w ~ 10² m³/s)
- Moderate to steep gradient.
 - ongoing work on backwater effects.
- Provides a testing ground for river plan form models, grain size variability, and channel migration and belt amalgamation, in a sequence stratigraphic context and in an ancient example.