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d The existence of the high-frequency sequence
stratigraphic cyclicity in the Gallup system

d High-frequency sequence stratigraphic
framework reconstruction — key stratigraphic
unit and surface

d Controlling mechanisms

d Re-evaluation of lithostratigraphy in sequence
stratigraphy domain
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Unconformity

= Six lithostratigraphic sandstone
identified in the
Gallup Formation — alphabetic
order

tOIlng@S are



McMaster
Geological Settings of the Gallup Sandstone EESE] g

High-frequency sequence
stratigraphy

= The sandstone tongues
are more equivalent to
depositional sequences
or sequence sets
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The world-class outcrops provide high-resolution
stratigraphic data to test the high-frequency cyclicity.

Methods:

* 71 sedimentological measured sections — average
distance between sections is less than 1 km

* A significant number of photo panoramas

* Key surfaces “walking-out” correlations
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Key Methods

* Trenching to measure covered sections in the slopes and to
reveal bentonite

* Bentonite layers provide isochronous controls and datums
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Upper ""Bentoniteri

Lower Bentonite

Trenching},
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= Parasequence is used as the basic building block to reconstruct

sequence stratigraphy

= Flooding surface (FS) is the fundamental bounding surface






Parasequence Characterization

Parasequence Thickness Histogram
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The thicknesses of parasequence vary from 1 to 20m, with an average thickness of 6.2m.
Most parasequences are 3-9m thick. Note that thickness of parasequence is determined by
accommodation, sediment supply, and position along depositional profile.
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Subaerial erosional surface =

Subaqueous erosional surface |

SB/RSME



Glossifungites ichnofacies marks the transgressive surface of erosion
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Torrivio

20

I Vertical Exaggeration =156 Bl Fluvial B F . Bedsetboundary YV Measured sections
h k I Fioodplain mudstones [l Upper shoreface sandstones . Flooding surface
m B Distributary channels [ Proximal lower shoreface sandstones 55l | Sequence bounduty
0 B Delta plain facies [1 Distal lower ] Transgressiveltavinement surface
0 5 -IU B Deltsfrontsandstones [ Barriar islands and bars ~. Regressive surface of marine erosion
- s, Maximum flooding surface

M Prodeita facies Il Eay fill or lagoonal facies S Topof Gallup Sandstone
Il Shelf mudstones 7] Bayhead delta facies ~— Coal seams
B Offshore transition I Tidal channels and deltas Bentonites

O The lower Gallup: 4 sequences, 7 parasequence sets, and 19
parasequences.

O The upper Gallup: 9 sequences, 22 parasequence sets, and 47
parasequences.
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Shoreline Trojectory
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* The shoreline migration shows overall low-angle trajectory.
[ ]

descending regressive shoreline trajectory indicates relative sea level fall
and correlates to sequence boundaries.

* PS 21 and 20 document a total shoreline advance of 57 km in low angle —

FSST and LST.
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Depositional Dip ——> NE

20
| Bedset boundary

\| Flooding surface I Aggradation-progradation (AP) 'm "’"“""E""""T;';”m

[\ Sequence boundary [ progradation-aggradation (PA) 0
] Maximum flooding surface ) 0 5 10
[ Top of Gallup Sandstone B Retrogradation (R)

[=-] Bentonite layers I Degradation (D)

e Four-fold accommodation successions: AP, PA, R, and D

e PA—LST; AP —HST; R-TST; D - ESST
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Dominant high-frequency cyclicity control

Fm Paraseq Par y A dati Shoreline Trajectory Shoreline Relative sea level
Set Tract Succession Migration change (m)
Distance (km)
1 la, 1b, lc, 1d, le HST APD Ascending regressive —4 1
«1.5 6
2 2 LST PA Ascending regressive —2.2 -7
3 3 HST APD Ascending regressive 12 14
4 4 LST PA Ascending regressive —2.2 -16
5 Sa, 5b HST APD Ascending regressive —3 18
6 6 LST PA Ascending regressive <28 25
7 7a, Tb HST APD Ascending regressive —13 7
—0.6 10
8 8a, 8b LST PA Ascending regressive —0.2 5
—0.5 -18
= 9 9a, 9b HST APD Ascending regressive —2.6 16
= <32 7
6] 10 10a, 10b FSST D Descending regressive —9 -28
5 11 11a, 11b HST APD Ascending regressive —18 23
g 12 12 LST PA Ascending regressive —6.5 10
=} 13 13 FSST D Descending regressive —4 -28
14 14a, 14b, 14c HST APD Ascending regressive —12.5 22
15 15a, 15b TST R Transgressive 24 12
16 16a, 16b LST PA Ascending regressive —5.5 2
«22 18
17 17a, 17b, 17¢, 17d FSST D Descending regressive —31 37—
18 18a, 18b HST APD Ascending regressive —l11 18
19 19 TST R Transgressive —44 24
20 20a, 20b, 20c, 20d, 20e LST PA Ascending regressive —37 5
21 21a,21b FSST D Descending regressive —22 -20
22 22a,22b, 22¢ HST APD Ascending regressive —6? 34 =
1 la, 1b LST PA Ascending regressive —1.5 3
—7.5 -9
o 2 2a,2b HST APD Ascending regressive —14.5 18
E] 3 3a,3b LST PA Ascending regressive —4 5
g —8 -14
) 4 4a, 4b, 4c HST APD Ascending regressive —12.5 12
2 5 5a, 5b LST PA Ascending regressive —5 8
S —8 -15
6 6a, 6b, 6¢, 6d, 6¢ HST APD Ascending regressive —16.5 35
<35 5
7 7a, 7b, 7c LST PA Ascending regressive —6 20
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values of

similar

Very the
maximum relative sea level fall
and rise can represent eustatic
sea level change

The estimated volume of sea
level change concurs with the
ephemeral Antarctic ice sheet in
the Cretaceous time hypothesis
Glacio-eustatic control



Dominant high-frequency cyclicity control i

J Radiometric time scale and biozones estimation — a
total duration of about 1.2 ma of the Gallup Formation

Total | Number Duration Milankovitch Cycles
Duration of Units
Sequence 92.3 ka » Eccentricity 100 ka
1.2 ma  Parasequence set 29 41.4 ka Obliquity 41 ka

Parasequence 66 18.2 ka Precession 19-24 ka
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* High-frequency sequence stratigraphy is documented in the
Cretaceous Gallup system.

* 13 sequences, 29 parasequence sets, and 66 parasequences are
identified using high-resolution sequence stratigraphic analysis.

* Descending regressive, ascending regressive, and transgressive
shoreline trajectories are resulted from the combination of the
changes in relative sea level and sediment supply.

* Accommodation successions reflect sequence stratigraphic
evolution.

* The estimated relative sea level changes and depositional durations
suggest a Milankovitch cycle dominated glacio-eustasy control of
the high-frequency stratigraphic cyclicity.
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