

High-Resolution Sequence Stratigraphy of the Cretaceous Gallup System, New Mexico, U.S.A.

Wen Lin & Janok Bhattacharya

School of Geography and Earth Sciences

McMaster University

May 23rd, 2018

Outlines

- 2.1. Introduction of the research
 - 2. Sequence stratigraphy analysis
 - 3. Discussion and conclusion

Introduction

- □ The existence of the high-frequency sequence stratigraphic cyclicity in the Gallup system
- High-frequency sequence stratigraphic framework reconstruction key stratigraphic unit and surface
- □ Controlling mechanisms
- Re-evaluation of lithostratigraphy in sequence stratigraphy domain

Geological Settings of the Gallup Sandstone

Geological Settings of the Gallup Sandstone

ster

Universi

Modified after Fassett, 2013; Dubiel, 2013; Nummedal and Molenaar, 1995; Jennette and Jones, 1995

Geological Settings of the Gallup Sandstone

High-frequency sequence stratigraphy

McMaster

 The sandstone tongues are more equivalent to depositional sequences or sequence sets

Methods

The world-class outcrops provide high-resolution stratigraphic data to test the high-frequency cyclicity.

Methods:

- 71 sedimentological measured sections average distance between sections is less than 1 km
- A significant number of photo panoramas
- Key surfaces "walking-out" correlations

Key Methods

- Trenching to measure covered sections in the slopes and to reveal bentonite
- Bentonite layers provide isochronous controls and datums

Outlines

Introduction of the research
2. Sequence stratigraphy analysis
3. Discussion and conclusion

Basic Building Block - Parasequence

McN

University

- Parasequence is used as the basic building block to reconstruct sequence stratigraphy
- Flooding surface (FS) is the fundamental bounding surface

High-Frequency Sequence Stratigraphy

Parasequence Characterization

The thicknesses of parasequence vary from 1 to 20m, with an average thickness of 6.2m. Most parasequences are 3-9m thick. Note that thickness of parasequence is determined by accommodation, sediment supply, and position along depositional profile.

Sequence Boundary Identification

Subaerial erosional surface

McMaster

Key Surfaces – RS/TSE

McMaster

Glossifungites ichnofacies marks the transgressive surface of erosion

Key Surfaces – RS/TSE

High-Resolution Sequence Stratigraphy

McMaster

University

High-Resolution Sequence Stratigraphy

McMaster

University

Mancos Shale

Top of Juana Lopez Member of Mancos Sha

Sandstone tongues are diachronous – time translation

Shoreline Trojectory

Universit

- The shoreline migration shows overall low-angle trajectory.
- descending regressive shoreline trajectory indicates relative sea level fall and correlates to sequence boundaries.
- PS 21 and 20 document a total shoreline advance of 57 km in low angle FSST and LST.

Accommodation Succession

McMaster

University

- Four-fold accommodation successions: AP, PA, R, and D
- PA LST; AP HST; R TST; D FSST

Outlines

- 1. Introduction of the research
- 2. Sequence stratigraphy analysis
- 3. Discussion and conclusion

Dominant high-frequency cyclicity control

Very similar values of the maximum relative sea level fall and rise can represent eustatic sea level change

MCMas University

- The estimated volume of sea level change concurs with the ephemeral Antarctic ice sheet in
- the Cretaceous time hypothesis
- Glacio-eustatic control

Dominant high-frequency cyclicity control MCMa

□ Radiometric time scale and biozones estimation – a total duration of about 1.2 ma of the Gallup Formation

Total Duration	Seq. Strat. Unit	Number of Units	Duration		Milankovitch Cycles	
1.2 ma	Sequence	13	92.3 ka		Eccentricity	100 ka
	Parasequence set	29	41.4 ka		Obliquity	41 ka
	Parasequence	66	18.2 ka		Precession	19-24 ka

Conclusions

- High-frequency sequence stratigraphy is documented in the Cretaceous Gallup system.
- 13 sequences, 29 parasequence sets, and 66 parasequences are identified using high-resolution sequence stratigraphic analysis.
- Descending regressive, ascending regressive, and transgressive shoreline trajectories are resulted from the combination of the changes in relative sea level and sediment supply.
- Accommodation successions reflect sequence stratigraphic evolution.
- The estimated relative sea level changes and depositional durations suggest a Milankovitch cycle dominated glacio-eustasy control of the high-frequency stratigraphic cyclicity.

Acknowledgements

- We would like to thank the Navajo Nation for permitting the field work and thank the Navajo people for allowing us to work on their lands.
- Funding for this project was generously supplied by NSERC Discovery Grant RPG IN05780-14 to Dr. Bhattacharya and sponsors of the McMaster University Quantitative Sedimentology Laboratories (QSL) including BP and Inpex.
- I am grateful of all the research grants received including the AAPG "Martin D. Hewitt" Named Grant and the GSA Student Research Grants.

